Odentwarts, or a transferred to the standard t

4951 641-80° Bonno-Kom9

Truck Crane

Model: XCT13

0

641-80-4 Basic technical specifications

Lifting capacity	
Max. lifting load	130t
Dimension	
Overall length	15195mm
Overall width	3000mm
Overall height	3970mm
In travel configuration	
Total weight	55000Kg
1st axle	10000Kg
2nd axle	10000Kg
3rd axle	13000Kg
4th axle	13000Kg
5th axle	9000Kg
Performance	
Max. travel speed	80Km/h
Max. grade ability	45%
Odrath 195 anor Boom	6 sections, $13.1 \text{m} \sim 61 \text{m}$
Length of boom + jib	B9m
Max. lifting height of	white the set sense. 60.7m
boom	ode attention and an
Max. lifting height of	cher x1.00e
boom + jib	101 05.5III
Xuzho	ou Heavy Machinery CO., LTD

We reserve the right to modify the design without notice for improvement.

Features and advantages of XCT130 Truck Crane

Based on the mature technology of K series accumulated for more than 10 years, XCT130, an XCMG G generation 130-ton truck crane combines the most advanced technology of truck cranes and all terrain truck cranes with the integration of XCMG latest scientific and technological achievements. It is a brilliant product for users with improved intrinsic quality.

XCT130 adopts five-axle truck crane chassis, six U-shaped booms, fixed extended jib, concealed double independent winches, external-geared slewing mechanism, combined counterweight, open hydraulic system. Main pump adopts variable pump, supplemented by fixed-displacement pump. Winch applies variable motor and slewing mechanism adopts fixed-displacement motor to meet different needs. Load-sensitive system brings higher working efficiency. Multiple-mode monitoring function is supported by computer-integrated control technology, which contributes to safer operation. The new outline of XCT series shows great elegance with stratified curved cover and large monolithic control panel in operator's cab. All these features contribute to larger working range, stronger lifting capacity and easier operation.

(1) High performance

Overall optimized matching technology is adopted with five-axle truck crane chassis and six-section high strength U-shaped boom. The six-section U-shaped boom is made of imported high strength steel with optimized aspect ratio, which reduces boom torsion, side-bending, etc. Inserted sliders may efficiently increase the overlapping length of adjacent boom sections and avoid point contact or line contact between slider and boom while the boom is lifting a load, avoiding local buckling phenomenon. Compact boom tail structure improves boom telescoping ratio, which effectively contributes to longer boom. The boom length takes the lead in the same class products in the crane industry at home and broad with the lifting capacity increased by 30% and working efficiency improved by 15%, which contributes to more flexible driving and stronger pass-ability.

(2) Energy-saving

July 2015

In-house developed load-sensitive valve control technology brings low failure rate, smooth manipulation and fine control. The application of large discharge variable pump with high-voltage electronic priority power control provides strong power for the crane with stability of system pressure and flow, as well as avoids boom shaking caused by shock. Imported large diameter multi-way valve applied with load-sensitive filter technology contrbutes to the improvement of user's efficiency by 15% with the increased superstructure operation speed. Multi-way valve with V-groove throttle and optimizedmatching electric proportional handle control strategies contribute to smooth lifting manipulation and fine control.

Taken power and economy into consideration, matching low-speed large-torque power system perfectly combines optimal power and economy.

(3) Intelligent

The latest control technology platform is adopted to update the system with the realization of intelligent crane operations and travel control, such as automatic planning of working conditions, winch servo control technology, lifting elevating compensation control technology, etc. With breakthrough of traditional crane control idea, the in-house design of the intelligent crane boom technology can realize the online planning of hoisting route according to hoisting demand and crane's current conditions. Automatic elevating compensation is realized in the hoisting process, when the hook height above the ground and the clearance between the hook and boom head is not changed. These features contribute to the improvement of boom control automation, hoisting sales and safety.

Road traveling and tight turning radius modes are available through rear-axle (4) Appearance and ergonomics A new generation of a unified with hydraulic control servo steering technology to ensure stable high-speed traveling and

A new generation of appearance design makes the whole vehicle harmonized and Streethousener Long unified with sturdy and elegant style, reliable in operation. chnoxon9.11 641.80

We reserve the right to modify the design without notice for improvement.

Overall dimension and turning track of crane in travel configuration

Technical specifications of superstructure

Model	A BOAT IN XC	CT130		
neur x1 @	Model	WP6G240E330	OM906LA. E3A/2	
info	Туре	In line, six-cylinder, water intercoo	cooled, supercharging	
	Manufacturer	Weichai Power Co., Ltd	Benz	
	Power/kw/rpm	176/2300	190/2200	
	Torque/N.m/rpm	860/1200-1700	1000/1200-1600	
	Displacement/ml	6750	6370	
	Fuel consumption /g/kw.h	200	203	
	Fuel tank capacity /L	About 28	BOL	
	Emission standard	China natio	nal III	
	Remark			

Hydraulic system

Hydraulic pump: variable pump and gear pump driven by superstructure engine, used for hoisting, elevating, telescoping and slewing operation.

Control valve: Load-sensitive proportional multi-way change valve, controlled by electric proportional pilot hydraulic oil. Oil circuit: air-cooled hydraulic oil cooler, which may effectively reduce the temperature of oil in the system. Oil tank capacity: about 1100 L.

Anti-torsion design is adopted in telescoping boom with high strength steel structure. Six telescoping booms are highly stable with the application of U-shaped cross section. The sliders which support the boom are also adjustable. Single-cylinder pinning telescoping mode is adopted to realize various combination of working conditions.

Boom length:13.1m~61m Speed: 460s for boom extending to 61m

We reserve the right to modify the design without notice for improvement.

URWINAIISHEW HWIER POCCINA

Single top (required)

Elevating system

Main winch system

(boom auxiliary pulley)

Fixed extended jib and optional inserts of 8 m are stored besides the main boom with 0°, 15° and 30° jib offset angles available.

Length:11.55m/20m/28m

Single pulley is fitted at boom head, used for single line operation..

Single-cylinder elevating with boom gravity fall mode to save fuel.

Speed:65s for elevating operation from -1 °to +81 °.

Hydraulic control is used for speed regulation. The system is driven by a hydraulic motor through a planetary gear reducer, with a normally closed brake, balance valve and a grooved drum equipped.

The main winch can be operated separately.

It has features of high speed with a light load and low speed with a heavy load. Single line pull.....126KN

Single line speed(no load) 135m/min Dimension \times length \cdots ϕ 24mm \times 265m

chnoxcmo.ru

(495) 641.80'

Hydraulic control is used for speed regulation. The system is driven by a hydraulic motor through a planetary gear reducer, with a normally closed brake, balance valve and a grooved drum equipped. The auxiliary winch can be operated separately. It has features of high speed with a light load and low speed with a heavy load. Single line pull126KN Single line speed (no load)135m/min

Hook blocks

CTRUT RANNIN TO

We reserve the right to modify the design without notice for improvement.

No.TypeLifting capacity (t)Parts of lineWeight (kg)QtyRemark1130t61215801Double-hook	
1 130t 6 12 1580 1 Double-hook	
2 70t 3 7 980 1 Single hook	
3 30t 1 7 490 1 Single hook	
4 11t 0 1 458 Single hook	

Slewing system

Three-row roller external tooth slewing ring is driven by the planetary gear reducer of slewing mechanism driven by a hydraulic motor, may continuously slew 360°. Power control or free slewing function is available, and the slewing speed may be infinitely regulated. Slewing speed $\cdots 0 \sim 2r/\min$

Operating mode

Operator's cab

641.80

Safety devices

Superiorenter Conce

Pilot electric proportional control is used for controlling the superstructure with PLC integrated intelligent control technology and CAN-BUS control network. Besides normal control functions, it also has the functions such as real-time monitoring, fault automatic diagnosis, fuzzy working conditions searching wireless and remote control counterweight erection (optional).

New fully-enclosed steel cab has better sealing and anticorrosive properties and it's safe and comfortable to use. It is equipped with a full-view front window. Safety glass and sun shield are used for windows. The cab features a new ergonomic seat design with backrest adjustment and armrests with joysticks fitted. A sliding door and a pull-out step are available to make it easy and safe as access and egress the cab. Wipers are fitted for the windshield and roof window. Standard controls and indicators are ergonomically arranged in the cab.

Hydraulic system: hydraulic balance valve, hydraulic relief valve, double-way hydraulic valve, etc. are available to make hydraulic system safe and stable.

The advanced microprocessor technology and embedded operating system are adopted in the control system, which can

We reserve the right to modify the design without notice for improvement.

URWINAIISHEW HWIER POCCINA

omoxon9.11

realize low power dissipation, high performance, high sensitivity and easy operation. LCD touch screen displays the load moment percentage, rated lifting capacity, working radius, boom length & angle, Max. lifting height, working condition codes, parts of line, limiting angle, information codes and other lifting operation parameters, illustrating with Chinese and pictures. Equipped with pre-alarm and overload alarm, system overload control output can effectively avoid danger during lifting. Special working angle limit function makes more reliable lifting operation under complex working conditions. The system also has an overload memory function (black box). The safety system includes displayer, central controller, length/angle sensor, over-winding switch, oil pressure sensor, etc.

Lowering limiter switch can make the drum maintain three circles of wire ropes at least.

Height limiter switch can make the lifting height within the Max. limit.

Hirschmann load moment limiting system, a safety protective unit for real-time calculation of load moment. When actual load moment is approaching overloading value, audible and visible warning will be sent out, and the dangerous movement will be automatically stopped ahead of overloading. Overload memory function (black box) and fault self-diagnosis function are available.

otechnoxong.ru

What can be shown as follows:

Odwill alberta Load moment percentage CHOLIFOXHIMAN TOMOS Actual lifting capacity 495 641.80' Rated lifting capacity Working radius Boom length Boom angle Max. lifting height Working condition code Parts of line Limit boom angle

We reserve the right to modify the design without notice for improvement.

LMI

Information code

Combined counterweight Total weight is 45 t. oneuroxinit

Counterweights of 0 t, 13 t, 23 t, 33 t and 45 t are available.

00

10	ombination of counterweight slabs						
	Working condition	Total weight (t)	Combination sequence				
	1	45	1+2+3+4×2				
/	2	33	1+2+3 100				
	3	23	1+2				
	4	13	1				
	5	0	0				

Dead weight and number of counterweight slabs

Item	Fixed slab ①	Slab ②	Slab ③	Slab ④
Dead weight (t)	13	10	10	6
Number of slabs	1	1	1	2

Centralized lubrication

OBMW anather

Chellextunen TCh

system for superstructure

Centralized lubrication system is controlled by computer program.

Automatic lubricating points are located on the slewing ring, the bearing seats of main and auxiliary winches, the higher and lower pivots of elevating cylinder, the tilting cylinder pivot of operator's cab and the rear pivot of boom.

The color of chassis and wheel rim is white. The color of driver's cab, superstructure and boom is engineering yellow.

We reserve the right to modify the design without notice for improvement.

641-80-47

Technical specification of chassis

Left-hand drive steering wheel, drive/steering type is $10 \times 6 \times 6$, 2nd, 3rd and 4th axles for driving, 1st, 2nd and 5th axles steering.

Frame

CTOLITOXHING TON

In-house designed and manufactured frame with load-bearing structure optimized. It is made of high strength steel and has anti-torsion box structure with walking surface covered.

Engine

Model	ISM11E4 440	WP12.430 E40	WP12.430 E50		
Type	In-line, 6 cylinder, 4 stroke, supercharging intercooler, water cooled, diesel				
турс		engine			
Manufacture	Xi'an Cummins Ltd.	Weichai Power Co., Ltd.	Weichai Power Co., Ltd		
Power/kw/rpm	318/1900	316/1900	316/1900		
Torque/N.m/rpm	2080/1200-1300	2060/1000-1400	2060/1000-1400		
Displacement/ml	10800	11596	11596		
Fuel consumption/g/kw .h	192	203.7	193		
Fuel tank capacity/L		About 360L			
Emission standard	China N	lational IV	China National V		
Remarks	Standard	Optional	Standard		
Printing 64 horsente	without of his posting				

lydraulic system

Constant displacement open-type system. The constant displacement gear pump is connected to transmission through PTO for controlling the movements of outriggers.

Transmission

Xi'an Cummins engine and Weichai engine is equipped with imported American Allison 6-speed automatic transmission; Weichai engine applies Shaanxi gear manual transmission, with 12 forward gears and 2 reverse gears available, steady and

WICHG

Odowingite the

reliable.

ore the Clutch Transfer case

Steering system

Axles

Drive shaft

SHOW DWIE Chellerthing 205 64 205 NGB

Brake system

Pull-type (Shaanxi Gear)

German ZF transfer case (China National V) with high and low gears and axial differential lock Kessler (Germany) transfer case (China National IV)

1st and 2nd axles are mechanically steered plus rear axial hydraulic servo

Five-axle chassis with reliable performance, axles 2, 3 and 4 for driving, axles 1, 2 and 5 for steering, made by distinguished manufacturers with the introduction of advanced technology at home and abroad.

1st axle: single tire, for steering;

2nd axle: single tire, for steering and driving;

3rd axle: double tires, for driving;

4th axle: double tires, for driving;

5th axle: single tire, for steering;

Cross serrated flange is adopted for connection of drive shafts, so transmission torque is enlarged and power transmission is optimized. Consequently, smooth and reliable transmission may be realized.

Front suspension adopts leaf spring balanced suspension and rear suspension adopts double trailing arm leaf spring balanced suspension, which increase the suspension regulating range and bring higher pass-ability and optimal effect for axle restraint.

Service brake: pedal operated double-circuit air pressure brake. The first circuit acts on wheels of axles 1 and 2; the second circuit acts on wheels of axles 3, 4 and 5. Parking brake: air-release brake, acting on the rear four axles by the spring energy storing air chamber on each axle;

We reserve the right to modify the design without notice for improvement.

<u>Hydraulic</u> s one Hextern

495

00 0

Outriggers

Electric system

POCCI

1-80-4

Driver's cab

Odwill and the state of the sta

OCREATED AND A CONCEPT

Auxiliary brake: engine exhaust brake, engine compression brake

Outrigger hydraulic system is a fixed-displacement open circuit. Fixed-displacement gear pump is connected to the transmission through PTO. Horizontal, vertical and swing cylinder switch are controlled by solenoid valve:

1. Front outriggers are controlled by swing and rear outriggers are controlled by telescoping.

2. Outriggers pipes are distributed more reasonably with the working efficiency improved by 30%.

Front and rear outrigger structure is supported by four points, operated fully by hydraulic system. There is an outrigger control station located at each side of the chassis, and there is a level gauge on each control station. Outrigger floats are secured under jacks through ball pivots. The outriggers are designed to support the entire crane for better operations under various working conditions.

Outrigger span:

Longitudinal × lateral	7.7m×7.9m
Float dimension	480mm×615mm
Reaction force of outrigger at max. lifting loa	d104000N

24V DC, negative ground, 2 batteries. There is a perfect illuminating system complying with Chinese road traffic standard, including head lamp, fog lamp and reversing lamp, etc.

Chassis adopts CAN-BUS system with LCD used as centralized data display device; comprehensive fault analysis and alarm function can be realized in this intelligent system with its high digital processing speed, stability and accuracy.

New full-dimension enclosed cab, luxury and comfort. It is designed to be leakproof, anti-corrosive and shockproof. It is equipped with a windshield offering outstanding visibility, rear mirrors, electric control washer, electronic lifters of doors and windows, heater & air conditioner, radio cassette player, etc. An air suspension seat for the driver and a simple sleeper for

We reserve the right to modify the design without notice for improvement.

Oren Harberty Con C B Poccon

30

technoxend I'l

the co-driver's seat are installed to supply comfort and reduce fatigue. Well-proportioned outline shows strong modern sense with outstanding features. Newly designed cab appearance includes exquisite coating of door handle and step, decoration of rear of side window and A-pillars, headlamps and air-inlet grille.

URNINATOHON TOMO B POCOM

ring the ching of the second second second

12.00R24-20PR, suitable for heavy truck with great A set of maintenance tools is supplied.

into@

A.

	List of parts transported (road travel)						
2	No	Child Bold Name		Weight (kg)	Total weight (t)	Dimension (mm)	Remark
Chenne Chenne	1, 1,	1, Jib inserts		2400	2.4	11550×850×1260	Optional inserts
	2 10	Single to	р	107	0.107	870×822×612	Standard
	3	Auxiliary winc included	h (rope)	1647	1.647	1512×1003×904	Standard
	4		Slab A	13000	00,10	3250×2102×372	
	5	Counterweight	Slab B	10000	45	3250×2102×312	Standard
	6	6 Counterweight	Slab C	10000	10	3250×2102×300	Stundard
	7		Slab D	6000×2		1363×1310×934	
	8		130t	1580		1969×900×688	
	9 10 Hook block	Hook block	70t	980	3 508	1871×920×357	Standard
		30t	490	5.508	1344×544×460	Standalu	
	11		11t	458		896×476×476	

List of parts transported (jobsite transfer)

					Total			1
	No.	Name Jib inserts		Weight (kg)	weight (t)	Dimension (mm)	Remark	
	1			465	0.465	8000×580×800	Optional inserts	
	1		Slab A	<mark>1</mark> 3000		3250×2102×372		
	2	Countomusicht	Slab B	10000	15	3250×2102×312	Standard	
	3	Counterweight	Sl <mark>ab</mark> C	10000	43	3250×2102×300	Stanuaru	
	4,1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Slab D	6000×2		1363×1310×934		
	pH5M	80-A70,11	130t	1580		1969×900×688		
OGWINN	1 ⁴ 6	Hook block	70t	980	3 508	1871×920×357	Standard	
chelite	1 8.0	1100K DIOCK	30t	490	5.500	1344×544×460	Standard	
0	871		11t	458	3	896×476×476		
				Odenter Sterfer	*7.495 64 0.701	9		

We reserve the right to modify the design without notice for improvement.

		Whe Bocchin	Main parts list
	16HBW	in a maint	(Take real parts as standard)
	No.	Name Name	Manufacturer
OSN.	HWW E	Chassis angina	Xi'an Cummins
OLTE	100	Chassis engine	Weichai Power Co., Ltd.
CUL	×2,00	Superstructure engine	Weichai Power Co., Ltd. MTU Hong Kong Ltd.
	3	Transmission	ALLISON America Shaanxi Fast Gear Co., Ltd
	4	Jiangmen Xingjiang Steering Gear Co., Ltd.	
	5	Transfer box	Kessler Germany
	6	Axle	Xuzhou Meritor Axle Co., Ltd.
	7	Tire	Double Coin Heavy-Duty Tire Co./Guizhou Tyre Co., Ltd./Double Coin Tire (Rugao) Co., Ltd. / Double Coin Tire (Chongging) Co., Ltd.
	8	Chassis hydraulic pump	Xuzhou Keyuan hydraulic pressure Co., Ltd.
	9	Superstructure hydraulic pump	Bosch Rexroth
	10	Chassis outrigger operating valve	Yidun Liquid Motivity (Shanghai) Co., Ltd.
	11	Superstructure multi- way valve	Bucher, Germany
	12	Slewing bearing	Xuzhou Rothe Erde Slewing Bearing Co., Ltd. Ma'anshan FangYuan Slewing Bearing Co., Ltd.
	13	Slewing motor	Beijing Huade Hydraulic Pump Branch Guizhou Liyuan
	14	Slewing reducer	Bosch Rexroth Tai'an Taishan Fushen Gearbox Co., Ltd.Dalian Huarui
	15	Main winch motor	Bosch Rexroth SAMHYDRAULIK (Italy) America
	16,11	Main winch reducer	Dalian Huarui Tai'an Taishan Fushen Gearbox Co., Ltd.
INNOV	12-117 M	Main winch rope	OLIVEIRA Portugal ArcelorMittal France
OGNETHN	18	Auxiliary winch motor	Bosch Rexroth SAMHYDRAULIK America
Ser. 3	19	Auxiliary winch reducer	Dalian huarui Tai'an Taishan Fushen Gearbox Co., Ltd.
	20	Auxiliary winch rope	OLIVEIRA Portugal ArcelorMittal France
	21	Elevating cylinder	Chengdu Hydraulic Cylinder Co., Ltd. Xuzhou Hydraulic Parts Co., Ltd. XCMG
	22	Telescoping cylinder	Chengdu Hydraulic Cylinder Co., Ltd. Xuzhou Hydraulic Parts Co., Ltd. XCMG
	23	LMI	Xuzhou Hirschmann Electronics Co., Ltd.
	24	Boom steel plate	SSAB Sweden

Technical Specifications

Main Technical Data Table of XCT130 in Travel configuration

	N. H. M. B. P. C. M.		Cochnical St	notifications		
all although the	CM ALBORA	Technical Da	ta Table of X	VCT130 in Travel	configuration	
OBN THIN (95) chnort					
Catagory		tam	Unit	(Subject	Parameter	ovement)
Category			UIIIt	CHILDRAN CON	F al allielei	
	Overa	III length	mm	NUMBER +	15195	
	Overa	all width	mm	O'RIGHHN ASS	3000	
Dimension	Overa Who	all height	mm	Cherry Cole	3970	07
S		rack	mm	1920	0+3500+1420+150	05
	Front	overbang	mm	2449/2	2449/2315/2315/2	449
	Rear	werhang			2030	
	Total weight in travel configuration		kg	55000		
	Axle load	1st axle	kg	10000		
Weight		2nd axle	kg	10000		
		3rd axle	kg	13000		
		4th axle	kg	13000		
		5th axle	kg		9000	1
	Chassis eng	gine model		ISM11E4 440	WP12.430 E40	WP12.430 E50
	Engine rate	d power	kw/(r/min)	318/1900	316/	1900
Power	Power Superstructure engine model Engine rated power		N.m/(r/min)	2080/1200~1300	2060/100	00~1400
UN2115HDYCN				WP6G240E330	OM906LA	E3A/2
Ognothy Nos			kw/(r/min)	176/2300	190/2	2200
anon x1 0	Engine rate	d torque	N.m/(r/min)	860/1200-1700	1000/120	00-1600
10.	Tra Ma	x. travel speed	km/h	80 (China Natio	nal IV) / 90 (Chin	a National V)
	vel speed Min	n. travel speed	km/h	chellextr. (495)	Strio 3	
Travel	Tur N ning	Iin. turning diameter	m	info	23	
	Min. grou	and clearance	mm		312	
	Approach angle		0		18	

	Departure angle	0	13
Waltert	Braking distance (at 30 km/h)	m	≤10
O & MILY HINKS.	Max. grade ability	%	45
cnource *7	Oil consumption per 100 km	L	65(Xi'an cummins)
Ň	Exterior noise level	dB(A)	
	Noise level at seated	dB(A)	annut the set of

<

	IN HAR BPO			(Subject to	technical im	provement)
S	Category	2,10	Item		Unit	Parameter
BN12 -18	My CALLOR	Max.	total rated lift	ing capacity	t	130
CHET	(ASS ochno	Mir	n. rated worki	ng radius	MM m	3
	x1 600 t	Turning	Со	ounterweight	s ^{coa} mm	48 <mark>00</mark>
		radius at turntable tail	Au	xiliary winch	o-AT mm	4950
			H	Base boom	kN.m	5116
		Max. load	Fully-	extended boom	kN.m	2506
		moment	Fully-ext	(11.55m)	kN.m	1666
	Main	Outrigger	L	ongitudinal	m	7.7
p	performance	(fully- extended)		Lateral	m	7.9
			E	Base boom	m	13.4
		Hoist height	Fully-	extended boom	m	60.7
			Fully-exten	ded boom + Jib(28m)	m	85.3
			Η	Base boom	m	13.1
		Boom length	Fully-	extended boom	m	61
			Fully-exten	ded boom + Jib(28m)	m	89
			Jib offset a	ngle	0	0, 15, 30
		Elevating time	В	oom raising	S	65
		Telescoping time	Fully ex	xtended/retracted	S	460
			Max. slewing	g speed	r/min	2
	WITE POCCHN	Outrigger	Outrigger	Extending Simultaneously	S	35
anorth	Working	extending	beam	Retracting Simultaneously	S	30
11X HARA	ob the tone	retracting time	Outrigger	Extending Simultaneously	occim s	50
2×2	o teo		jack	Retracting Simultaneously	O-AT IS	40
		Hoisting	Ν	Iain winch	m/min	135
	16	line, 4th layer)	Au	xiliary winch	m/min	135
	Noise		Exterior noise	e level	dB (A)	≤122
	NUISE				dD	

19

Rated Load Charts of XCT130 Truck Crane

Rated Lifting Load Tables for Boom

O BUND THI

The Berry (Lifting load in t, boom length and radius in m)

			On	fully-exter	nded outrig	gers of 7.9	m, with cou	unterweight	t of 45 t				
R/L	13.1	17.5	17.5	17.5	21.9	21.9	21.9	26.3	26.3	26.3	30.7	30.7	30.7
3	130	70.5	100	110			ST X O						
3.5	126	70	95	110			· ·						
4	117	68	90	106	61	90	91	59	70	77			
4.5	109	65	87	101	58	90	91	56	69	77			
5	100	63	85	96	56	87	91	52	67	75	55	63	60
6	87	61	80	85	52	83	87	47	63	71	48	62	57
7	73	58	75	75	48	73	80	41	61	68	46	57	55
8	63	52	70	65	45	64	68	39	55	61	44	53	49
9	55	48	65	57	42	57	60	36	49	56	38	50	47
10	48.5	44	55	51	39	51	53	33	45	50.5	34	47	46
12		36	40.5	40	35	40.6	39.9	31	39	40.6	31	41.5	40
14		32.5	32.3	30.5	31.5	32.3	31	28	32.3	31.7	27	32.5	31
16					27	26	24.9	27	26.1	25.6	26	26.4	25.2
18					22	21.5	20.5	22.5	21.7	21.2	23	21.9	20.8
20				100 CCNN				19	18.3	17.8	19.5	18.5	17.4
22			N. H.	8°.1				17	15.6	15.1	17	15.8	14.8
24			"Suptront Chr	80-A-0-14							14.5	13.7	12.6
26			Ophilithinker 5	ATTON				nteg cc/nn			12.8	11.9	10.9
Telescoping code of boom sections	00000	00001	00100	01000	00011	01100	11000	00111	02100	11100	01111	11110	21100
Boom angle	25-80		26-78			26-78	WILLING WILLING	6A1.8tom9.	26-81			27-81	
Hook block capacity				6.51	13	BOt	Ouroft, 199	o chno				70t	
Parts of line	12		10			8	STE X 10		7			6	

We reserve the right to modify the design without notice for improvement.

Odentrational Colle Rated Lifting Load Tables for Boom

			~~ · ·	On full	y-extende	ed outrig	gers of 7.	9 m, with	counterv	veight of	45 t					
R/L	35.1	35.1	35.1	39.5	39.5	39.5	43.9	43.9	43.9	48.4	48.4	48.4	52.8	52.8	57.2	61
6	48	50	53					OWIN	Why CAL	oms						
7	45	48	50	36.3	39.5	40.5		outer	(A95) chin							
8	42	46	47	35.2	38.5	40	25.2	28.5	30.5							
9	37	45	46	34.1	37.4	37	24	28	30	21.1	23.6	26.2				
10	33	40	42	31.9	35.2	35	23	27	29	20.5	23	25	17.2	19		
12	30	36.3	38	27.5	31	31	21	25	27	19.5	22	23	17	18.5	17.9	13.5
14	26	31.9	32	25.3	28	28	19	23.5	25	18.2	20	21.5	16	17	16	13.3
16	23.5	26.4	25.5	23.1	23.5	24	17.5	21.5	23	16.5	17.5	19.5	15.6	15.5	14.5	13
18	22	22.5	21.5	22	20.9	21	16	18	21	15.2	16	17.5	15	14.7	13.8	12.7
20	18.5	19.3	18.1	19.8	18.7	18	15	16	18.8	14	15	16	14	14	13	11.5
22	17	16.6	15.4	16.5	16.5	15.6	14	14.5	15.8	13	13.5	15	13	13	12.5	10.7
24	14.8	14.4	13.3	15	14.3	13.5	13.2	13.7	13.6	12	12.5	13.5	12.2	12.3	11.7	10
26	13	12.6	11.5	13.2	12.5	11.7	12	12.5	12	11.2	11.5	12	11.5	11.5	11.2	9.2
28	11.5	11.1	10	11.7	11	10.4	11	11	10.4	10	10.5	10.5	11	10.9	10.4	8.5
30	10.2	9.9	8.8	10.4	9.8	9.1	10.3	9.6	9.2	9.3	9.8	9	9.8	9.6	9.8	8.2
32				9.3	8.7	8	<mark>9</mark> .4	8.5	8.1	8.5	8.7	8	8.8	8.4	9	8
34				8.4 cm	7.7	7	8.5	7.5	7.1	8	7.7	7	7.8	7.5	8.2	7.3
36				ALC BY			7.5	6.8	6.3	7.5	6.9	6.3	7.2	6.6	7.2	6.9
38			Warth	C.M. 80.49	in .		6.7	6	5.2	6.6	6.3	6	6.5	5.9	6.5	6.5
40			OBMITHNE	S CALOTTO					WIE CO	6.1	5.7	5	5.5	5.2	5.9	5.9
42			cheuns 7	C. C. C.					How B. C. B.	5.5	5	4.3	5	4.5	5	5.2
44			11					3	sin ton 1.85	100.10			4.5	4	4.7	4.6
46					-			ORNIT	Mr of ono				4	3.5	4.2	4.2
48								chell	A CLOCK	100					3.7	3.7
50									into						3.1	3.3

We reserve the right to modify the design without notice for improvement.

July 2015

				the go												
52			à	HANNO	1 10											3
54			WILM 20	t 20 t	119.		343 									2.7
Telescoping code of boom sections	02111	1 1111	21110	11112	12111	21111	11122	12211	22111	5 ⁵¹ 1222	122 <mark>21</mark>	<mark>2</mark> 2211	12222	22221	22222	33333
Boom angle		27-81	13	Into	27-81			28-81	W. H. B.	1	28-81		29-	-82	29-81	28-82
Hook block capacity			7	0t				N	Upt Chi S	J-A O.TU	3	Ot				
Parts of line		5			4			OGNIT	MAR 6 6ATO	3				-	2	

Non con

Rated Lifting Load Tables for Boom

(Lifting load in t, boom length and radius in m)

			0	n fully-ext	ended out	riggers of	7.9 m, with	i counterwei	ght of 0 t				
R/L	13.1	17.5	17.5	17.5	21.9	21.9	21.9	26.3	26.3	26.3	30.7	30.7	30.7
3	130.0	70.5	91.0	110.0									
3.5	126.0	70.0	90.0	105.0									
4	117.0	68.0	90.0	99.0	51.0	70.0	91.0	48.0	60.0	77.0			
4.5	109.0	65.0	85.0	95.0	50.0	69.0	88.0	47.0	59.0	75.0			
5	78.6	62.0	80.0	79.0	48.0	6 <mark>7.</mark> 0	77.8	45.0	57.0	73.0	45.0	63.0	58.0
6	47.4	50.2	48.6	47.6	45.0	48.6	46.8	43.0	48.6	47.8	43.0	48.9	47.1
7	33.0	35.4	34.1	33.2	36.4	34.1	32.6	36.5	34.0	33.4	36.2	34.3	32.9
8	24.7	26.9	25.8	25.0	27.8	25.7	24.3	27.9	25.7	25.0	27.5	25.9	24.6
9	18.4	20.9	19.5 cm	18.7	21.8	19.5	18.0	22.0	19.5	18.8	21.6	19.8	18.3
10	14.0	16.3	NP5.1	14.3	17.2	15.1	13.8	17.4 cm	15.0	14.5	17.0	15.4	14.0
12		10.8	9.8 AS	chine 9.0	11.6	9.8	8.6	NA 1.7	9.7	9.2	11.4	9.9	8.8
14		7.6	6.6,00	5.9	8.3	6.6	5.5	64 CN 8.40-47 11	6.6	6.1	8.2	6.8	5.8
16					6.2	4.6	3.5million	6.2+cm	4.6	4.1	6.0	4.7	3.8
18					4.6	3.1	2.1	4.7	3.1	2.6	4.5	3.3	2.3
20							с ^с >	10° 3.6	2.0	1.6	3.4	2.2	
22								2.7			2.5		

We reserve the right to modify the design without notice for improvement.

July 2015

				the go									
24			15Hbl	MGLATIN							1.8		
Telescoping code of boom sections	00000	00001	00100	01000	00011	01100	11000	00111	02100	11100	01111	11110	21100
Boom angle	25 °~80 °		26°~78°	Otech		26°~78°	1	26°~81°	36 °~	<mark>~81 °</mark>	35 °~81 °	48 °∼81 °	53 °~81 °
Hook block capacity			11		13	30t		W HW BO				70t	
Parts of line	12		10			8	5	phic M 80-AI I'	7			6	
							O GUNLWIN	A95 ochnoxon	.0				

ler cch

					On full	y-extende	ed outrigge	ers of 7.9 r	n, with cou	unterweight	of 0 t					
R/L	35.1	35.1	35.1	39.5	39.5	39.5	43.9	43.9	43.9	48.4	48.4	48.4	52.8	52.8	57.2	61
6	45.8	46.0	48.2													
7	35.8	35.4	33.8	33.0	35.2	34.7										
8	27.3	26.8	25.4	27.5	26.7	26.3	25.2	26.9	26.2							
9	21.4	20.8	19.2	21.6	20.6	20.2	22.0	20.9	20.1	21.1	21.3	20.4				
10	16.7	16.2	14.8	17.0	16.1	15.7	17.4	16.3	15.6	17.4	16.7	15.8	17.2	16.2		
12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11.4	10.6	10.3	11.7	10.8	10.2	11.8	11.1	10.4	11.6	10.7	11.2	11.2	
14	7.9	7.5	6.4	8.2	7.4	7.1	8.4	7.6	7.0	8.5	7.9	7.2	8.3	7.5	7.9	8.0
16	5.8	5.4	4.4	6.0	5.4	5.0	6.2	5.4	5.0	6.3	5.8	5.1	6.2	5.4	5.8	5.8
18	4.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.5	3.8	3.6	4.7	4.0	3.5	4.8	4.3	3.7	4.6	3.9	4.3	4.3
20	3.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.4	2.7	2.5	3.6	2.9	2.4	3.7	3.2	2.6	3.5	2.9	3.2	3.2
22	2.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.5	1.9	1.6	2.7	2.0	1.6	2.8	2.3	1.8	2.6	2.0	2.3	2.4
24	1.6			1.8			2.1			2.1	1.6		1.9		1.7	1.7
26					100 90A	4				1.5						
Telescoping code of boom sections	02111	11111	21110	11112	12911	21111	11122	12211	22111	11222	12221	222 11	12222	22221	22222	33333
Boom angle	46 °∼81	0	51 °∼ 81 °	55 °~~~	53 % +°	57 °~ 81 °	58 °~ 81 °	61 °∼ 81 °	61 °~	59 %~ 81 °	62 °~ 81 °	65 °~ 81 °	65 °~ 82 °	68 °∼ 82 °	68 °∼ 81 °	70 °~ 82 °
Hook block capacity			7	Ot	infoot			~1	NUN ANN TON	CA1-80-AT	30	t			~	
Parts of line		5			4				O'CON STHIN 05	Binort				4	2	

We reserve the right to modify the design without notice for improvement.

23

ST

Rated Lifting Load Tables for Boom Odenty and Colic (Lifting load in t, boom length and radius in m)

		, e	On half-ext	tended out	riggers of	5.2m, with	n counterw	eight of 2	3 t				
R/L	13.1	17.5	17.5	17.5	21.9	21.9	1 21.9 S	26.3	26.3	26.3	30.7	30.7	30.7
3	105.0	70.5	91.0	110.0		- BWILL	when can to	ine .					
3.5	100.0	70.0	90.0	105.0		Conte	(A95) chin						
4	95.0	68.0	90.0	99.0	51.0	70.0	91.0	48.0	60.0	77.0			
4.5	89.0	65.0	85.0	89.4	50.0	69.0	88.0	47.0	59.0	75.0			
5	69.4	62.0	70.6	69.6	48.0	67.0	68.8	45.0	57.0	69.7	45.0	63.0	58.0
6	47.2	49.6	48.3	47.4	45.0	48.2	46.8	43.0	48.2	47.6	43.0	48.5	47.1
7	35.2	37.3	36.2	35.4	38.1	36.1	34.8	38.2	36.1	35.5	37.8	36.3	35.0
8	27.6	29.5	28.5	27.8	30.2	28.4	27.3	30.3	28.4	27.9	30.1	28.6	27.5
9	22.3	24.2	23.2	22.6	24.9	23.2	22.1	25.0	23.1	22.6	24.7	23.4	22.3
10	18.5	20.3	19.4	18.7	21.0	19.4	18.2	21.0	19.3	18.8	20.8	19.5	18.5
12		15.0	14.1	13.5	15.6	14.1	13.1	15.7	14.1	13.6	15.4	14.2	13.3
14		11.5	10.7	10.2	12.2	10.7	9.8	12.2	10.6	10.2	12.0	10.9	9.9
16					9.7	8.3	7.4	9.8	8.3	7.9	9.6	8.5	7.6
18					7.9	6.5	5.6	8.0	6.6	6.2	7.8	6.7	5.8
20								6.6	5.1	4.8	6.4	5.4	4.5
22								5.5	4.1	3.7	5.3	4.2	3.4
24			Megoccyn.						1		4.4	3.4	2.6
26		1. BIN	GAT 1								3.7	2.6	1.8
Telescoping code of boom sections	00000	00001	00100	01000	00011	01100	11000	00111	02100	11100	01111	11110	21100
Boom angle	25 °~72 °	OOLOTHIN NOF	26°~78	°		$26 \sim 78$	HWIE POC		26 °~ 81 °			27 °~81 °	
Hook block capacity		510 ×1,00			130t		THEHRING CO	ATT				70t	
Parts of line	12	11.	10			8 6111	when the car to	mo.	7			6	

We reserve the right to modify the design without notice for improvement.

					anthin Ang Boo	AT TH										
				Ognat	On half	-extended	d outrigge	ers of 5.21	n, with co	unterweigł	nt of 23 t					
R/L	35.1	35.1	35.1	39.5	\$39.5	39.5	43.9	43.9	43.9	48.4	48.4	48.4	52.8	52.8	57.2	61
6	45.8	46.0	47.9		ime					H. C. A.						
7	37.6	37.2	35.8	33.0	35.5	36.6			Waltert	W. 80.49.14						
8	29.8	29.4	28.2	30.1	29.3	29.0	25.2	28.5	28.9	5 ch orton						
9	24.5	24.1	23.0	24.7	24.0	23.7	24.0	24.2	23.6	21.1	23.6	23.8				
10	20.6	20.2	19.1	20.8	20.1	19.8	21.0	20.2	19.8	20.5	20.6	19.9	17.2	19.0		
12	15.3	15.0	13.9	15.4	14.8	14.6	15.7	15.0	14.5	15.8	15.3	14.6	15.6	15.0	15.3	13.5
14	11.8	11.5	10.5	12.0	11.4	11.1	12.2	11.5	11.0	12.3	11.8	11.2	12.2	11.5	11.8	11.8
16	9.4	9.1	8.2	9.6	9.0	8.7	9.8	9.1	8.6	9.8	9.4	8.8	9.7	9.1	9.4	9.4
18	7.6	7.3	6.4	7.8	7.2	7.0	8.0	7.4	6.9	8.1	7.6	7.0	7.9	7.3	7.6	7.7
20	6.2	5.9	5.0	6.4	5.8	5.6	6.6	5.9	5.5	6.6	6.2	5.7	6.6	5.9	6.2	6.2
22	5.1	4.8	3.9	5.3	4.7	4.5	5.5	4.9	4.5	5.5	5.1	4.6	5.4	4.8	5.1	5.2
24	4.2	3.9	3.0	4.4	3.8	3.6	4.6	4.0	3.6	4.6	4.2	3.7	4.6	3.9	4.2	4.2
26	3.5	3.2	2.3	3.7	3.1	2.9	3.8	3.2	2.8	3.9	3.5	3.0	3.8	3.2	3.5	3.5
28	2.9	2.6	1.8	3.0	2.5	2.2	3.2	2.6	2.2	3.3	2.9	2.3	3.1	2.6	2.9	2.9
30	2.3	2.1		2.5	2.0	1.8	2.7	2.1	1.7	2.7	2.3	1.8	2.6	2.1	2.3	2.4
32				2.0	1.5		2.2	1.6		2.3	1.8		2.2	1.6	1.9	1.9
34				1.6			1.8			1.9			1.8		1.5	1.5
36						C	1.5			1.5						
Telescoping code of boom sections	02111	11111	21110	11112	Hol 121911	21111	11122	12211	22111	11222	12221	22211	12222	22221	22222	33333
Boom angle	27 °~	~81 °	34 °∼ 81 °	27 °	34 ~~+~ 81 °	40 °~ 81 °	34 °~8∄	0	43 °~ 81 °	47°~ 81°	42 °~ 81 °	50 °~ 81 °	53 °~ 81 °	51 °∼ 82 °	54 °∼ 82 °	56 °~ 81 °
Hook block			7	Ot .	Infold				Warth	CM 80.09.14	3	80t				
Parts of line		5			4				O CONTRACT	3 chinton					2	
1 arts of fille	1	5	<u>I</u>				1		chente 1	Of C.			<u> </u>		_	

We reserve the right to modify the design without notice for improvement.

Rated Lifting Load Tables for Boom Odenty and Colle (Lifting load in t, boom length and radius in m)

			On h	alf-extend	ed outrigge	ers of 5.2m	, with cou	interweigh	t of 0 t				
R/L	13.1	17.5	17.5	17.5	21.9	21.9	21,9	26.3	26.3	26.3	30.7	30.7	30.7
3	65.0	60.0	57.0	55.0			Continuent of	641 ortonio		lines.			
3.5	60.0	55.0	52.0	50.0			Control (A9)	echn					
4	55.0	50.0	48.0	47.0	51.0	50.0	48.0	52.0	50.0	49.0			
4.5	43.7	46.9	45.1	43.9	48.2	45.0	43.0	47.0	45.0	44.1			
5	33.4	36.2	34.6	33.6	37.3	34.6	32.8	37.4	34.6	33.8	37.0	34.9	33.2
6	21.8	24.2	22.9	22.1	25.1	22.9	21.4	25.2	22.8	22.2	24.9	23.1	21.7
7	15.6	17.7	16.5	15.8	18.5	16.5	15.2	18.6	16.5	15.8	18.2	16.7	15.4
8	11.6	13.5	12.5	11.8	14.2	12.5	11.3	14.4	12.4	11.9	14.1	12.6	11.5
9	8.9	10.7	9.7	9.0	11.4	9.7	8.6	11.5	9.7	9.2	11.2	9.8	8.8
10	6.9	8.6	7.7	7.0	9.3	7.7	6.6	9.4	7.7	7.2	9.1	7.8	6.8
12		5.8	4.9	4.3	6.4	4.9	3.9	6.5	4.9	4.5	6.2	5.1	4.2
14		3.9	3.1	2.6	4.6	3.1	2.2	4.6	3.1	2.7	4.4	3.3	2.4
16					3.3	1.8		3.4	1.8		3.1	2.0	
18					2.3	2		2.4			2.2		
20								1.6					
Telescoping code of boom sections	00000	00001	001000	ം [ം] 01000	00011	01100	11000	00111	02100	11100	01111	11110	21100
Boom angle	25 °~72 °	101	26°~78°	cm9.ru	26 °~ 78 °	38 °∼ 78 °	46°∼ 78°	36°∼ 81 °™	50 °∼ 81 °	56 °∼ 81 °	53 °~ 81 °	58 °∼ 81 °	62 °∼ 81 °
Hook block capacity		cheur	at age into		130t		HEIN	MN, PO				70t	
Parts of line	12		1011			8	Walls to	Somort	7			6	

We reserve the right to modify the design without notice for improvement.

					ASITEHEN LANDER PO	LAT LU										
				OBN	On hal	f-extende	d outrigge	ers of 5.2n	n, with cou	unterweig	ht of 0 t					
R/L	35.1	35.1	35.1	39.5	× 39.5	39.5	43.9	43.9	43.9	48.4	48.4	48.4	52.8	52.8	57.2	61
6	24.6	24.1	22.6		inte				in the second se							
7	18.0	17.6	16.2	18.2	17.4	17.0			Walter C	N 80-001011						
8	13.8	13.4	12.2	14.1	13.4	13.0	14.4	13.4	12.9	OA OTO						
9	11.0	10.6	9.4	11.2	10.5	10.2	11.5	10.6	10.1 A	e ^{ct} 11.5	11.0	10.3				
10	8.9	8.6	7.4	9.1	8.5	8.2	9.4	8.6	8.1 100	9.4	8.9	8.2	9.3	8.6		
12	6.1	5.8	4.7	6.2	5.7	5.4	6.6	5.8	5.3	6.6	6.1	5.4	6.4	5.8	6.1	6.2
14	4.2	3.9	3.0	4.4	3.8	3.5	4.6	3.9	3.5	4.7	4.2	3.7	4.6	3.9	4.2	4.3
16	3.0	2.6	1.7	3.1	2.6	2.3	3.4	2.6	2.2	3.4	3.0	2.4	3.3	2.6	3.0	3.0
18	2.0	1.7		2.2	1.6		2.4	1.8		2.4	2.0		2.3	1.7	2.0	2.0
20							1.7			1.7			1.6			
Telescoping code of boom sections	02111	11111	21110	11112	12111	21111	11122	12211	22111	11222	12221	22211	12222	22221	22222	33333
Boom angle	59 °~	~81 °	63 °∼ 81 °	64 °,	~81 °	67 °∼ 81 °	64 °∼ 81 °	67 °∼ 81 °	70 °∼ 81 °	67 °∼ 81 °	70 °∼ 81 °	73 °∼ 81 °	70 °~ 82 °	72 °∼ 82 °	74 °∼ 81 °	76 °∼ 82 °
Hook block capacity			70)t							3	Ot				
Parts of line		5			4					3					2	

Rated Lifting Load Tables for Boom

*7 495 64 1-2 (Lifting load in t, boom length and radius in m)

Organiastanta Constantia

					On ful	lly-exten	ded outri	iggers of	7.9m, w	ith coun	terweigh	t of 45 t						
		52800			57200			61000	0	les 1 house	52800			57200			61000	
L					10600				<u>ر</u>	N NO				18100				
R/A	0	15	30	0	15	30	0	15	30	0	15	30	0	15	30	0	15	30
16	8.7																	
18	8.3	6.3		7.8			7.6											
20	8.0	6.0	5.5	7.5	5.7		7.3	5.7		4.9								
22	7.7	5.7	5.2	7.1	5.3	5.2	7.0	5.3	4.8	4.6	3.4		4.3			4.0		
24	7.3	5.3	5.0	6.8	5.1	5.0	6.6	5.1	4.6	4.3	3.2		4.0			3.9		
26	7.1	5.1	4.7	6.4	4.8	4.7	6.2	4.7	4.3	4.0	3.1	2.2	3.8	2.8		3.7	2.6	
28	6.7	4.8	4.4	6.0	4.6	4.4	6.0	4.5	4.2	3.7	2.9	2.1	3.7	2.7	2.2	3.5	2.5	
30	6.3	4.3	4.2	5.7	4.3	4.2	5.6	4.3	4.1	3.5	2.6	2.1	3.5	2.6	2.1	3.4	2.4	2.0
32	6.0	4.1	4.0	5.4	4.1	4.0	5.2	4.0	4.0	3.3	2.5	2.0	3.3	2.5	2.0	3.3	2.3	1.9
34	5.7	3.9	3.9	5.0	3.8	3.9	5.0	3.8	3.9	3.1	2.4	2.0	3.1	2.4	2.0	3.2	2.2	1.8
36	5.4	3.8	3.8	4.8	3.6	3.8	4.6	3.5	3.8	2.9	2.3	1.9	2.9	2.3	1.9	3.1	2.1	1.8
38	5.0	3.6	3.8	4.5	3.5	3.8	4.3	3.4	3.7	2.7	2.2	1.9	2.7	2.2	1.9	3.0	2.0	1.7
40	4.8	3.4	3.7	4.3	3.3	^{3.7}	4.0	3.2	3.6	2.5	2.2	1.9	2.5	2.1	1.9	2.8	2.0	1.6
42	4.5	3.3	3.6	3.8	13.10	3.6	3.4	3.1	3.5	2.4	2.1	1.8	2.4	2.1	1.8	2.7	1.9	1.6
44	4.2	3.1	3.6	3.3 0	+3.0 %	3.6	2.9	2.8	3.5	2.3	2.1	1.8	2.3	2.0	1.8	2.6	1.9	1.5
46	3.8	2.9	3.5	2.9	2.8 0	3.3	2.7	2.6	3.3	2.2	2.0	1.8	2.2	2.0	1.8	2.5	1.8	1.5
48	3.4	2.7	3.1	2.4	2.6	2.8	2.4	2.5	2.8	2,1,0	° 2.0	1.7	2.1	1.9	1.7	2.4	1.8	1.5
50	2.8	2.6	2.7	2.1	¹¹⁰ 2.3	2.4	2.0	2.2	2.4	2,0	. S. 9	1.7	2.0	1.9	1.7	2.2	1.7	1.4
52		2.2	2.3	1.7	1.9	2.0	1.7	1.9	2.0 08	+"1.9 S	mo 1.9	1.7	1.9	1.8	1.7	2.0	1.7	1.4
54				1.4	1.6	1.6	1.4	1.5	1.7 che	1.9	1.8	1.6	1.7	1.8	1.6	1.6	1.7	1.3
56						1.3	1.1	1.2	1.3	1.8	4.8	1.6	1.4	1.7	1.6	1.3	1.6	1.3
58									1.0	1.5	1.7	1.6	1.1	1.4	1.6	1.1	1.4	1.2

We reserve the right to modify the design without notice for improvement.

Intr 2015										
July 2015		and contra								
60		The state of the s			1.4 1.5		1.1	1.3	1.1	1.2
62		must ak tong.						1.0		1.0
Telescoping code of boom sections	12222	22222 ^m	33333	12	2222		22222		33333	
				Orana and Article Control	one in		•			
		Oppingeneration of the sport of	ify the design w	other and the state of the stat	or improvement	nt.				
				*						

On fully-extended outriggers of 7.9m, with counterweight of 45 t											
1 Han	20	52800		57200			61000				
LHHMAG	28m										
R/A	80,0	15	30	0	15	30	0	15	30		
www.20 0	3.2										
22 00	on 3.0	2.2		2.8			2.8		-		
24 0	3.0	2.1		2.7			× 20				
26,10	2.8	2.0		2.6	2.0	1 Hr	2.6	2.0			
28	2.6	1.9	1.6	2.4	1.9	1.6	2.4	1.9			
30	2.4	1.8	1.6	2.3	1.8	N1.5	2.30	1.8	1.5		
32	2.3	1.8	1.5	2.2	1.8 00	1.5	2.2	1.8	1.5		
34	2.2	1.7	1.5	2.1	1.7	1.50	n ^{n²} 2.1	1.7	1.4		
36	2.1	1.7	1.4	2.0	1.7.0	1.40	2.0	1.6	1.4		
38	2.0	1.6	1.4	1.9	1.6	1.4	1.9	1.6	1.4		
40	1.9	1.6	1.4	1.8	1.6	1.4	1.8	1.6	1.3		
42	1.8	1.5	1.3	1.7	1.5	1.3	1.7	1.5	1.3		
44	1.7	1.5	1.3	1.5	1.5	1.3	1.5	1.5	1.3		
46	1.6	1.4	1.3	1.4	1.4	1.3	1.4	1.4	1.2		
48	1.5	1.4	1.2	1.3	1.4	1.2	1.3	1.4	1.2		
50	1.4	1.3	1.2	1.3	1.3	1.2	1.3	1.3	1.2		
52	1.3	1.3	1.2	1.3	1.2	1.2	1.3	1.2	1.2		
54	1.3	1.3	1.2	1.2	1.2	1.1	1.2	1.2	1.1		
56	1.3	1.3	1.2	1.2	1.2	1.1	1.2	1.2	1.1		
58	1.2	1.2	1.1	1.2	1.2	1.1	1.2	1.2	1.1		
60	1.2	1.2	1.1	1.2	1.2	1.1	1.1	1.1	1.0		
62	1.2	1.2	1.1	1.2	1.1	1.1	1.1	1.1	1.0		
64	1.0	1.0	1.0		1.0	1.0		1.0	1.0		
66					1.0			1.0			
68								1.0			
70				4				1.0			
Telescoping code of boom sections		1222			2222			3333			

Notes on the rated load charts:

1. The total rated loads given in the rated load charts are the maximum lifting capacity when the crane is set up on firm and level ground, which includes the weight of the hook block and slings.

2. The working radius shown in the rated load charts is the radius when the load is lifted off the ground, and it is the actual value including loaded boom deflection.

3.A lifting operation is permissible only when the wind force is below grade 5 (instantaneous wind speed is 14.1 m/s, wind pressure is 125 N/m^2).

4. Before beginning lifting operation, the operator should know the weight of the load to be lifted and its working range, and then select proper working conditions. Never operate the crane beyond the limit shown in the chart. Use the lower value from the chart when the boom length or working radius is between the range of values.

5. Observe the boom angle limit. Never operate the crane with the boom angle beyond the recommended limit even if a load is not being carried. Otherwise, the crane will tip.

We reserve the right to modify the design without notice for improvement.

OBMIN another

GTREHOXHMAN AC

0

6. The boom length given in the rated load charts should be extended according to the telescoping ratio of each section

7. The total rated load for single top is the same as that for the boom, and the max. lifting load should not exceed 11500 kg.

8. Total rated load shown in tables is the value without the jib attached. When the jib is attached to the boom head, 5000 kg must be deducted from the rated lifting load according to the actual situation.

0

CTRHOMMAN TC

CTOHOMMAN TOMOS

technoxon9.11

(495)

teomoxon9.11

